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Determining the onset of wave breaking in unforced nonlinear modulating surface
gravity wave trains on the basis of a threshold variable has been an elusive problem for
many decades. We have approached this problem through a detailed numerical study
of the fully nonlinear two-dimensional inviscid problem on a periodic spatial domain.
Two different modes of behaviour were observed for the evolution of a sufficiently
steep wave group: either recurrence of the initial state or the rapid onset of breaking,
each of these involving a significant deformation of the wave group geometry. For both
of these modes, we determined the behaviour of dimensionless growth rates constructed
from the rates of change of the local mean wave energy and momentum densities of the
wave train, averaged over half a wavelength. These growth rates were computed for
wave groups with three to ten carrier waves in the group and also for two modulations
with seven carrier waves and three modulations with ten carrier waves. We also
investigated the influence of a background vertical shear current.

Two major findings arose from our calculations. First, due to nonlinearity, the
crest–trough asymmetry of the carrier wave shape causes the envelope maxima of these
local mean wave energy and momentum densities to fluctuate on a fast time scale,
resulting in a substantial dynamic range in their local relative growth rates. Secondly,
a uni�ersal behaviour was found for these local relative growth rates that determines
whether subsequent breaking will occur.

1. Introduction

Modulating wave groups and wave breaking are conspicuous features of the
dominant waves on the open ocean, with a wide range of important consequences for
fundamental geophysical processes as well as commercial maritime operations.
Determining the onset of wave breaking in modulating wave groups of nonlinear
surface gravity waves is a time-honoured problem that has been intensively studied
both theoretically and observationally. Mathematically, it involves the local nonlinear
stability of a free-surface flow with a large oscillatory basic state, for which no exact
analytic theory at present exists.

The history of the problem has its origins in the steady, irrotational sharp-crested
wave form of Stokes (1880) and Michell (1893). However, in the intrinsically unsteady
circumstances in which breaking usually occurs, these steady limiting Stokes waves are
probably never realized due to their inherent instability.

The papers of Benjamin & Feir (1967) and Zakharov (1968) are landmark studies in
understanding the slowly varying evolution of weakly nonlinear wave groups. Yuen &
Lake (1980) give an insightful overview of these studies and subsequent developments,
involving both refinements to the analysis and observations of wave group evolution
in wave tanks. Recent work in this area is reviewed by Hammack & Henderson (1993).
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A very comprehensive account of the mathematical treatment of this topic was given
by Yuen & Lake (1982) in terms of model equations for the evolution of the wave
envelope. These equations are based on approximations to the exact equations of
motion which are analytically intractable, and include the nonlinear Schro$ dinger
equation (correct to third order in the wave steepness) and Dysthe’s (1979) equation
(correct to fourth order in the wave steepness). Underlying these approaches is the
notion of a slowly varying wave train in which the (complex) envelope amplitude
function varies slowly compared with the associated phase function. More recent
papers extending the scope of such studies have been published by Lo & Mei (1984),
Trulsen & Dysthe (1990) and Hara & Mei (1991), but these formulations still involve
approximations to the full equations of motion which become questionable in the
context of resolving fundamental issues on wave breaking. Major concerns are the
limitations inherent in the assumptions of slow variation and the neglect of higher-
order terms in the wave steepness parameter as the wave form steepens rapidly towards
the onset of breaking.

Computations of the evolution to breaking of fully nonlinear, unsteady deep water
waves were first reported by Longuet-Higgins & Cokelet (1976). Their results
confirmed that unsteady breaking occurs at wave steepness levels well below that of the
limiting steady configuration of the Stokes (1880) wave, with its sharp crests containing
a 120° angle. Field observations are also inconsistent with the intuitive notion that the
onset of breaking occurs at some critical wave geometry. For example, Holthuijsen &
Herbers (1986) in their detailed study of wave breaking in the open ocean reported that
it was difficult to distinguish the population of breaking waves from the overall wave
population on the basis of their steepness probability distributions. A survey of such
observational studies appears in the recent review article by Banner & Peregrine (1993).
The degree to which observable details of unsteady wave breaking are reproduced by
potential flow models is also discussed there (p. 382). The most recent study on this
aspect is by Skyner (1996), who compared numerical predictions from Dold &
Peregrine’s (1986) code with internal velocity measurements made during the plunging
process using particle image velocimetry (PIV) techniques. After a small shift of the
numerical data to match the surface profiles, the predicted and measured kinematics
were in close (within 2%) agreement. The predicted and measured surface shapes were
also in very close agreement. From such studies, there can be little doubt that the
essential features of two-dimensional wave breaking are captured by the Dold–
Peregrine model well into the overturning regime, and that conclusions drawn from
studying the model behaviour are likely to be relevant to the actual fluid dynamics
underlying the onset of wave breaking in self-modulating wave groups. Clearly, final
acceptance of any breaking criteria derived from numerical models must await
experimental validation.

Other approaches addressing the onset of breaking have been through spectral
decomposition and stability analyses. The detailed observational study of Melville
(1982) largely confirmed the predictions of the two-dimensional Benjamin–Feir
instability for initial carrier wave steepness levels up to 0±29. While the present study
was restricted to moderate initial wave steepness, for steeper initial wave trains,
Melville (1982) found that three-dimensional effects dominate the evolution. In a
subsequent study, Melville (1983) investigated the modulational properties of these
wave trains using Hilbert transform analysis and concluded that significant spatial
modulation in the local wavenumber, frequency and envelope amplitude occurred
within the evolving wave groups. A detailed analysis of the local crest stability by
Longuet-Higgins & Cleaver (1994) and Longuet-Higgins, Cleaver & Fox (1994)
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showed that the crest of a very steep irrotational gravity wave considered in isolation
is unstable and quantified the growth rate in terms of the radius of curvature of the
undisturbed crest. When related to the previously determined instability of the
underlying steady wave (Tanaka 1983), this crest instability appeared to be coupled to
the lowest superharmonic instability. These authors suggested that this crest instability
should also be operative within modulating wave group situations, but this was not
investigated in detail.

Other recent approaches have also contributed further knowledge and insight,
particularly the contributions of Tulin & Li (1992), Wang, Yao & Tulin (1993) and
Schultz, Huh & Griffin (1994). For a modulating wave group, Tulin & Li (1992)
calculated the intra-wave depth-integrated energy differences for different subsections
of a two-dimensional, second-order Stokes (1847) deep water wave train, consisting of
the basic sinusoid plus its first harmonic, modulated according to the Benjamin–Feir
sideband instability model. They examined the differences in the local depth-averaged
energy along four subsections of length one half of the wavelength of the wave profile
embracing the crest, trough, forward and rear faces of the wave. They concluded that
significant differences in energy existed along the wave group, particularly between the
trough region and crest regions of the steepest wave near the centre of the
(symmetrical) wave group. Within the limitation of the second-order Stokes wave
assumption, their study shows that such intra-wave energy imbalances are capable of
increasing the energy flux to the forward face of a steep wave. This analysis did not
establish an explicit criterion for the irreversible instability that leads to breaking, but
highlighted the potential importance of intra-wave fluxes in this problem.

Wang et al. (1993) reported an interesting extension of previous approaches based
on numerical solution of the fully nonlinear two-dimensional problem on a periodic
domain, in which they synthesized a fully nonlinear numerical wave tank. Their
simulations confirmed the ideas of Tulin & Li (1992) and suggested that a threshold for
determining breaking onset involved the ratio of horizontal water speed at the crest to
the group velocity. They found that for all cases that proceeded to breaking, this ratio
exceeded one. However, even if this were shown to be valid generally, this quasi-
kinematic criterion does not elucidate the underlying details of the instability. Also, as
discussed below in §2.3.4, questions arise as to the definition of the group velocity in
such nonlinear wave trains.

Schultz et al. (1994) used a fully nonlinear periodic-domain numerical code for
irrotational flow to examine the relative merits of wave steepness and root mean square
(r.m.s.) potential energy as breaking discriminants. They concluded that the r.m.s.
potential energy computed over a local wavelength provides significantly less scatter
for the various breaking scenarios they investigated. These include focused wave
groups, straining by converging channel sidewalls, flow over obstacles and subhar-
monic instability. They also suggested an absolute criterion of potential energy}total
wave energy exceeding 0±52. However, this kind of criterion does not appear to be valid
in rotational flows, where the fraction potential energy}total wave energy has been
shown to vary significantly as a function of the strength of the background vorticity
(Teles da Silva & Peregrine 1988). Millinazzo & Saffman (1990) also reported
significant changes to the wave shape and hence the potential energy in the presence
of a surface shear layer. Therefore it is unlikely that a criterion involving a potential
energy threshold can be valid universally. It is seen below that this kind of criterion also
fails to explain the nature of the instability.

The results of these very recent studies have served to refocus attention on the
problem and highlight the complex underlying issues involved in understanding what
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F 1. Free-surface profiles showing the two distinct evolution modes for an evolving wave group
with five waves in the modulation, reproducing the results of DP. The wave propagation direction is
from left to right. The initial group has a dominant centre frequency and two small spectral
sidebands. The left-hand panels (a)–(d ) have initial steepness (ak)

!
¯ 0±11 and show evolution

with recurrence. The associated times in wave periods are (a) t¯ 0, (b) t}2π¯ 40, (c) t}2π¯ 85,
(d ) t}2π¯ 165. The right-hand panels (e)–(h) have (ak)

!
¯ 0±1125 and show evolution to breaking.

The evolution times in wave periods are (e) t¯ 0, ( f ) t}2π¯ 40, (g) t}2π¯ 70±1, (h) t}2π¯ 74±9.

determines the onset of wave breaking and whether it is controlled by a universal
threshold of some wave field parameter(s). The phenomenon is clearly illustrated by
the computational wave example shown in figure 1, for which details of the underlying
computational model are given below. Two deep water wave groups with five waves in
one modulation are shown in the top panels (a) and (e) in this figure. Full details of the
initial group structure are given below. They differ only marginally in the initial wave
steepness (ak)

!
of the dominant spectral component, with the wave trains on the left-

and right-hand panels having initial steepness 0±11 and 0±1125, respectively, so that the
initial carrier waves are nonlinear. At similar intermediate times t}2π¯ 40, the
two envelopes have deformed due to the nonlinear interactions within the group,
resulting in a pronounced local growth of the wave envelope. At somewhat later times
t}2π¯ 85 and 70±1 respectively, there has been further local growth of the dominant
(largest-amplitude) section of the wave envelope, increasing the local energy and
momentum densities. This is accompanied by a reduction in the envelope amplitude in
other parts of the wave group, with a corresponding decrease in their local wave
energy and momentum densities. It should be noted that the local steepness ak of the
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largest carrier wave in the figure 1(e–h) is very similar to that in figure 1(a–d ).
Also, the r.m.s. potential energies of these two wave configurations are within a few
percent of each other. The horizontal water velocities at the steep crests in these two
configurations are respectively 0±94 and 0±70 of the linear group speed of carrier waves
with this wavenumber and the Lagrangian vertical accelerations are very similar with
crest values of ®0±31.

During subsequent time steps, the steepest wave in panel (c) ceases to grow and then
decreases in steepness as the wave train undergoes a recurrence towards the original
configuration. In contrast, the steepest wave in panel (g), with a comparable steepness,
subsequently amplifies rapidly and evolves to breaking. The evolution process
produces significant spatial modulations not only in the local wave steepness, but also
in the local propagation characteristics such as the wavenumber, frequency and phase
speed of the carrier waves.

Modulating wave trains can be initiated in a variety of ways and the results of the
study by Dold & Peregrine (1986, hereinafter referred to as DP) of a fully nonlinear,
two-dimensional, periodic-domain free-surface computational model provided an
appropriate starting point for the present study. In brief, they studied the evolution of
wave groups composed of a fundamental carrier wave with small upper and lower
sideband components, using as parameters the initial carrier wave steepness (ak)

!
and

N, the number of waves in one modulational length. Their initial wave group had the
structure of a uniform, finite-amplitude, steady deep-water wave train whose linear
approximation is η¯ a cosx. Scalings were used in the DP computational model, with
g¯ 1 for the gravitational acceleration, ρ¯ 1 for the water density and a carrier
wavelength of 2π. This gave unity as the reference values for the linear wavenumber,
linear radian frequency and linear phase speed, with a corresponding wave period of
T¯ 2π. On this primary wave are superimposed perturbations having the initial form

εa cos
nm

n
x®φ εa cos

n®m

n
x®φ , with ε¯ 0±1. (1.1)

Here N¯ n}m, where n and m are integers that determine the initial perturbation
wavenumbers. The calculations were limited to 3%N% 10 (see DP) with 3% n% 10
and 1%m% 3, providing sideband wavenumbers in the range [0±667, 1±333]. Also,
following DP, the phase angle φ was usually taken as "

%
π and was chosen to give the

most rapid growth.
The trend of the DP results is indicated in the lower part of figure 2. For a given N,

breaking always occurs above the indicated initial steepness [(ak)
!
] threshold, and

below it a recurrence occurs towards the original wave group. In contrast to the strong
dependence of the evolution on the parameter space ²N, (ak)

!
´, the actual steepness at

breaking (ak)
breaking

has no clear trend with N, as is seen in the upper part of figure 2.
This conclusion is independent of the precise definition of the steepness at breaking,
here taken to be the product of the local wavenumber and one-half of the elevation of
the crest above the mean trough level.

The behaviour seen in figure 2 is among many fascinating aspects of this problem
that motivated the present effort to understand what determines the evolution to
breaking or to recurrence and whether this is controlled by a ‘universal ’ threshold
parameter. These fundamental issues are addressed in detail in the subsequent sections
of this paper and are intended as a first step towards understanding the onset of
breaking of the dominant waves at sea.
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F 2. Carrier wave steepness for different values of N, the number of waves in one modulation.
The lower set of points D and ¬ are the initial steepness (ak)

!
for the recurrence and the breaking

case with Ω¯ 0 (zero background vorticity). This provides the boundary between these two modes,
and reproduces the results of DP. The upper values indicated by  are the corresponding values at
breaking (ak)

breaking
for Ω¯ 0. The point n shows (ak)

breaking
for Ω¯ 0±2 for the case N¯ 5,

highlighting the strong influence of the background shear on the steepness at breaking.

2. Methodology

2.1. O�er�iew

Two-dimensional modulating wave groups with moderate initial steepness values have
two distinct modes of evolution, as illustrated in figure 1. These sequences motivated
the viewpoint pursued in this study: carrier waves in modulating nonlinear wave
groups grow systematically only if there are sustained convergences of momentum flux
and energy flux to a particular region of the group as it evolves. In the present
conservative system, this must occur as an exchange process with other regions within
the wave group undergoing a corresponding reduction in local energy and momentum
density. We envisaged that carrier waves passing through the envelope maximum
should proceed to break if the local mean wave momentum and energy densities have
sufficiently large relative growth rates that persist for a sufficient duration. Otherwise,
the envelope maximum may experience initial growth but then cease growing and
evolve into a bounded behaviour such as the ‘recurrence’ mode seen in figure 1. Thus
the basis of our approach to understand the onset of breaking was to calculate the
behaviour of non-dimensional relative growth rates, following the wave group, of the
local mean energy and momentum densities for different parts of the wave envelope.

In the absence of any suitable analysis techniques, we used a numerical approach.
The DP free-surface code was used to calculate the evolution of the free surface of a
modulating wave group. For any given time during the evolution, our interior code
was used to compute the associated interior flow field from the free-surface
configuration. This allowed us to investigate the detailed behaviour of the fundamental
variables identified above for a range of initial wave group configurations.

In this context, the local mean is the spatial average taken over a suitable interval,
such as the local wavelength L. While the choice of local averaging interval has a
certain flexibility, it is important to note (see figure 1) that strong modulations occur
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in the local wavelength L and these need to be taken into account. Details of the
determination of the local wavenumber and related propagation characteristics are
described below in §2.3.4. Local dimensionless relative growth rates may then be
defined for the mean wave momentum density and energy density at each point along
the wave train.

2.2. Definitions

2.2.1. Fundamental �ariables

The wavelength-averaged local mean wave momentum density M= is defined as

M= (x, t)¯L−"

x+L/#

x−L/#

η

−¢

u(x«, y«, t) dy«dx«. (2.1a)

The corresponding wavelength-averaged local mean wave energy density along the
group E= is defined by

E= (x, t)¯L−"

x+L/#

x−L/#

η

−¢

"

#
(u#�#) dy«"

#
η# dx«. (2.1b)

Here x, y are the usual horizontal and vertical spatial coordinates, (u, �) is the
corresponding velocity field, y¯ η(x, t) is the free surface, L(x, t) is the local
wavelength, the waves are in deep water and the water density is taken as unity. The
spatial averaging in (2.1) ‘smears ’ the distribution of these mean quantities relative to
the underlying carrier wave form. Other choices of average interval were found to
provide much better localization of the envelopes of the mean momentum and energy
densities and their growth rates. These were based on half-wavelength averages, in
which L is replaced by L}2 in the definitions (2.1). These key averages, denoted by M=

"/#
and E=

"/#
respectively, formed the basis of this study.

2.2.2. Relati�e growth rates

Dimensionless growth rates β
M

(x, t) and β
E
(x, t) were then constructed for the

relative rates of change of these locally averaged quantities, with subscripts suppressed,
as follows:

β
E

¯
1

ωE=
DkE=

Dt
(2.2a)

and β
M

¯
1

ωM=
DkM=

Dt
¯

1

ωM= #
M=

DkM=

Dt
. (2.2b)

In these growth rate expressions, Dk}Dt¯ ¥}¥tc©E or Mª ¥}¥x is the derivative
following the envelope of E= (x, t) or M= (x, t). A detailed discussion of the envelope
propagation speeds c©E or Mª is given below in §2.3.4. Also, as discussed in detail in
§2.3.4, the local frequency ω was found to vary along the wave group by up to a
maximum of 25%, but for the purpose of determining a breaking threshold, it was
more convenient to normalize by the linear carrier wave frequency.

For small-slope spatially uniform gravity wave trains, E= and M= in (2.1a, b) have
constant values, of second order in the wave steepness (see Phillips 1977, §3.2). For the
unsteady highly nonlinear wave groups in this study, E= and M= are still small quantities
but are spatially non-uniform due to the strong local modulations that occur. M= can
be positive, or negative (the local mean momentum can be opposite to the propagation
direction) or zero, while M=

"/#
ranges over larger values. As these quantities appear in

the denominators of the relative growth rate expressions, they can locally become
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F 3. Typical distributions along the wave group of E= , M= , E=
"/#

and M=
"/#

and their Dk}Dt
derivatives for Ω¯ 0, (ak)

!
¯ 0±12, N¯ 5 at t}2π¯ 60 for the initial wave group (1.1). Each panel

shows the wave elevation y¯ η (thin line) and the corresponding density or Dk}Dt distributions.
(a) M=

"/#
, (b) 5E=

"/#
, (c) 5DkM=

"/#
}Dt, (d ) 10DkE=

"/#
}Dt, (e) 5M= , ( f ) 5E= , (g) 5DkM= }Dt, (h) 20DkE= }Dt.

Note the poor localization of DkE= }Dt in (h).

vanishingly small and give rise to spurious large local values of β
E
(x, t) and β

M
(x, t)

that are not relevant to the issue of wave breaking. These were avoided by imposing
a lower threshold for their magnitudes. Validation of this procedure is detailed in
§2.3.3.

Anticipating results for which the techniques are described subsequently, figures
3(a)–3(h) show a set of typical distributions of E= , M= , E=

"/#
and M=

"/#
and their Dk}Dt

derivatives (after thresholding) for a wave group configuration where the wave group
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has evolved significantly from its initial symmetric configuration and is in the process
of growing locally towards breaking. These figures show the oscillatory spatial
character of the mean momentum density distribution as well as the degree of
localization of the rates of change for the various averages. It is evident that DkE}Dt
is not well localized along the envelope of E= and was considered unsuitable for the
present purposes. Also, while DkM}Dt is well-localized, the envelope of M= often
developed multiple local peaks due to the oscillatory character of M= , as may be seen
in figure 9. The relative amplitudes of these local peaks can fluctuate on a fast time scale
during the evolution, making it difficult to identify a quasi-steadily progressing
envelope maximum at which to identify the corresponding value of β

M
(x, t). Hence we

limited our investigation to the behaviour of the half-wavelength mean energy and
momentum densities, as each of these quantities provided well-localized relative
growth rates and well-defined stable envelope maxima where the corresponding growth
rate could be evaluated.

2.3. Computational and numerical techniques

2.3.1. Free-surface code

The fully nonlinear two-dimensional inviscid free-surface code used in this study was
developed by DP and is documented fully by Dold (1992). It uses the boundary element
method and is capable of representing the wave profile past the point of overturning.
We note that this code can also compute wave group evolution with a uniform
background vorticity. This allowed us to examine the influence of surface shear
currents on wave breaking and to extend the scope for examining the ‘universality ’ of
any prospective breaking criterion.

We carefully checked the performance of this code for the influence of various kinds
of numerical instabilities as discussed comprehensively by Dold (1992, pp. 101–109).
He identified several possible types of numerical instability that can arise in the
solutions, including weak, strong and steep-wave instabilities, and provided a
comprehensive discussion of these numerical instabilities and their suppression.
Briefly, strong instability was eliminated by using a small precision control parameter
ε. Weak instability was eliminated by selecting a sufficiently large order l

B
for backward

differencing. Steep-wave instability was suppressed in our calculations by using
sufficiently small ε, fifth-order backward differencing and sufficiently large NP (number
of points}wave), as well as smoothing.

In our calculations, the choice of ε¯ 0±001, l
B

¯ 5 and NP¯ 16 avoided these
numerical instabilities. We verified that there was no significant effect of numerical
instability on our results as follows.

(i) We compared the results obtained with and without the use of smoothing and
found no significant difference. The appearance of strong numerical instability was
controlled even without smoothing in our case of non-forced waves with initial
steepness (ak)

!
smaller than 0±16.

(ii) We used various values of ε in test cases and it was found that ε¯ 0±001 was
sufficiently small to obtain a stable solution.

(iii) We tested various values of NP and it was found that NP¯ 16 was sufficiently
large to ensure a stable result.

(iv) We used various values of l
B

for some typical examples and as suggested by
Dold (1992), it was found the choice of l

B
¯ 5 improved the time-stepping accuracy.
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F 4. Typical distributions of the numerator and denominator terms in the relative growth
rates ((2.2a) and (2.2b)) showing the effects of low-pass filtering and thresholding using the levels
ε
M

¯ ε
E
¯ 0±02 for L¯ 1}2. The thin and thick lines show each distribution before and after low-pass

filtering and thresholding, respectively. The wave conditions are as specified in figure 3.

2.3.2. Interior �elocity field code

The calculation of β(x, t) in (2.2) requires detailed knowledge of the interior flow
field in the computational domain. Most of the cases investigated were of irrotational
flow, which is fully determined by the instantaneous boundary configuration as a
consequence of Cauchy’s integral theorem. The details are given in Appendix A. The
influence of a uniform background vorticity was also investigated using the DP code,
as for this case it is possible to decompose the motion into the superposition of a
potential flow and a uniform shear flow.

It proved to be computationally efficient to use the hybrid approach of calculating
the surface profiles and interior flows successively. The horizontal resolution of the DP
code output, was typically 16 points per wave. Our interior flow code was based on the
spectral method and produced a much higher resolution. We used spline interpolation
of the free-surface code output, typically using between 768 and 1024 points
horizontally over the computational interval. Also, the depth of this domain was
always more than eight times the carrier wavelength, ensuring deep water conditions.
Overall, this approach provided an efficient and accurate interpolation of the interior
flow field beneath the waves.
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"/#
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E
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2.3.3. Thresholding

As pointed out above, the local mean momentum and energy densities along the
wave group can become arbitrarily small and generate local singularities in the relative
growth rates. These were suppressed by applying lower bound thresholds as follows:
if rM= r%M=

min
then rM= r¯M=

min
and similarly for E= . Clearly, the choice of threshold

should only affect β
M

(x, t) or β
E
(x, t) at isolated locations and should only serve to

reject large relative growths caused by vanishingly small denominator terms. The
physically relevant growth rates of the envelope maxima were not affected by this
process. Typical choices for such thresholding were ε

m
¯ ε

e
¯ 0±02 for L¯ 1}2 and

ε
m

¯ 0±003 for L¯ 1. Figure 4 shows the influence of thresholding and low-pass
filtering (see §2.4) in the numerator and denominator of the growth rate expressions
(2.2). Figure 5 shows the insensitivity of the choice of threshold to the determination
of the resultant maximum growth rates.

2.3.4. Propagation characteristics

Local wa�enumber. Because of the significant modulations in the local carrier
wavelength that arise during the evolution of the wave group, throughout this study
the local wavelength L(x, t) was obtained from 2π}k(x, t), where k(x, t) is the local
wavenumber along the wave profile at time t ; k(x, t) was calculated systematically from
the derivative ¥φ}¥x of the unfolded phase function φ(x, t) computed from the Hilbert
transform of the free-surface profile. Some post-filtering was sometimes necessary to
eliminate spurious wavenumber results that arose where the local conditions for
applying the Hilbert transform were not ideal. This was required at steep crests, which
are very much sharper than the adjacent troughs, and also where a significantly shorter
local wavelength disturbance appeared on the profile above or below the mean level.
Low-pass filtering was carried out by removing an appropriate number of high-
wavenumber Fourier components determined by our need for an accurate rep-
resentation of the local wavelength. Extensive testing indicated that even for extreme
waves just prior to breaking, the calculated wavelengths after filtering were within
³5% of the actual physical wavelength determined from the wave profile. Figure 6



118 M. L. Banner and X. Tian

1.4

1.2

1.0

0.8

0.6

0 5 10 15 20 25 30 35 40

x

k

F 6. Comparison of computed wavenumber distribution (continuous line) and local
wavenumbers estimated from direct measurement of crests, troughs and zero-crossings for the case
of Ω¯ 0, N¯ 5 and (ak)

!
¯ 0±12 at t}2π¯ 50.

0.5

0

–0.5

1.5

1.0

0.5

1.5

1.0

0.5

1.5

1.0

0.5
5 10 15 20 25 30 35 40

5 10 15 20 25 30 35 40

5 10 15 20 25 30 35 40

5 10 15 20 25 30 35 40

è

ö

k

c

x

(a)

(b)

(c)

(d)

F 7. Horizontal distribution of propagation characteristics just prior to the commencement of
recurrence at t}2π¯ 84±4 for the case shown in figure 1: (a) wave elevation profile, (b) local
wavenumber k, (c) local frequency ω, (d ) local phase speed c.

shows the accuracy of such a wavenumber determination just prior to breaking.
Figures 7(b) and 8(b) show typical wavenumber distributions along the modulating
nonlinear wave group. This approach was preferred to wavelet analysis as it gave better
accuracy in test cases such as shown in figure 6.
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Local frequency. This was also computed from the time derivative ®¥φ}¥t of the
phase function of the elevation (or of the steepness) at closely separated times, using
ωE®(φ(t∆t)®φ(t®∆t))}2∆t. This also required low-pass filtering to match the
frequency as determined at selected phase points on the wave. Typical distributions of
ω along the wave profile are shown in figures 7(c) and 8(c).

Local phase speed. This is the local frequency divided by the local wavenumber and
is shown plotted in figures 7(d ) and 8(d ).

En�elope propagation speed for local mean energy and momentum densities. For a
linear wave group, the computation should produce energy and momentum envelope
speeds c©Eª, c©Mª equal to the familiar group velocity c

g
¯ 0±5. We validated our

computational approach for the following specific case by calculating the envelope
velocities of these quantities for a linear wave group of the form

η¯ 0±01 cos(x)0±005 cos(1±2x®π}18)

for incremental time steps of 0±2. The envelope of E= was obtained directly as this
quantity is positive definite, but that of M= required a Hilbert transform envelope
calculation. The determination of c©Eª and c©Mª at time t followed by calculating the
mean horizontal displacement of the respective envelopes in the interval [t®∆t, t∆t],
and dividing by the time increment 2∆t. The resulting average values of c©Eª were very
close to 0±5. The corresponding calculation for c©Mª was less straightforward due to
computational noise at such low wave steepness levels and was not pursued.

For the nonlinear wave groups in this study, it is interesting to recall the discussion
by Peregrine & Thomas (1979) on the formal extension of the group velocity concept
to nonlinear waves. From their discussion, there is no unique definition of the group
velocity, and the most appropriate choice is not clear for cases where strong amplitude
and wavenumber modulations occur. To circumvent these conceptual difficulties, we
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simply used the envelope propagation speeds c©Eª and c©Mª as the relevant propagation
velocities, determined by the same finite difference approach as described above. With
the local unsteady deformation of these envelopes entering as an additional
consideration, we were limited to calculating the envelope speed by analysing the
motion of the envelope at its maximum. Figure 9 illustrates the situation for E=

"/#
and

M=
"/#

for three incremental time steps at a strongly evolving stage of a wave group with
initial steepness 0±12. This figure also shows the envelope evolution for E= and M= . As
discussed in §2.2, the multiple local peaks of M= , seen clearly in this figure, were
responsible for our decision not to retain M= as a primary dynamical variable. Even
then, the envelope motion analysis for M= showed that the envelope speeds were
measurably less than the phase speed of the individual carrier waves. The results
obtained for c©Eª and c©Mª are discussed in §3.2.1.

2.4. Growth rate computations

The growth rate computations for β
E
(x, t) and β

M
(x, t) defined in (2.2a) and (2.2b)

require calculating Dk}Dt¯ ¥}¥tc©E or Mª ¥}¥x of the local average energy and
momentum densities, normalizing by the local value of these quantities and by the local
frequency ω. The latter involves the laborious calculation of ω(x, t) throughout the
evolution. To avoid this, we decided to retain the linear carrier wave frequency
ω¯ 1 in the relative growth rate expressions. When rescaled by the true local frequency
at the envelope maxima, the actual maximum relative growth rate is reduced typically
by a similar factor of around 25% for both breaking and recurrence cases. For
convenience in establishing a breaking threshold, we decided to retain the linear
frequency as the reference normalizing frequency in the relative growth rate expressions
throughout this paper.

In calculating the temporal growth rate contribution, an approximation described in
Appendix B was used that reduced the computational effort appreciably. This
approximation was used only after it was established that the errors involved were not
significant. Finally, we point out that the β-distributions required low-pass filtering to
obtain suitably smooth curves from which to extract βmax. However, by varying the
number of Fourier modes retained in each case, we checked very carefully that the
filtering did not influence the results for βmax.

3. Results

3.1. Linear case

As a familiar test case, we examined an infinitesimal-slope wave group formed by the
linear superposition of two slightly different-wavelength equal-amplitude infinitesimal-
slope wave trains with (ak)

!
C 0±01. Here, the resulting wave group envelope is

sinusoidal, with a corresponding sinusoidal distribution of E= and M= . Individual carrier
waves, whose phase speed is twice the group speed, move through the group and are
modulated accordingly, with a given carrier wave experiencing a growth and decay
cycle as it passes through the group. The main point is that when travelling with the
linear group �elocity (c©Eª E c©Mª E 0±5), the rates of change of E= and M= are zero at any
location within the group pattern, and hence the growth rates β

E
(x, t) and β

M
(x, t) are

also zero everywhere within the group. Our computations successfully reproduced this
behaviour.
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F 10. Envelope propagation speeds for the peak of the envelope at different times for the
breaking wave case with (ak)

!
¯ 0±12 for (a) M=
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and (b) E=

"/#
.

3.2. Fully nonlinear modulating wa�e trains

3.2.1. En�elope propagation speeds

Propagation speeds of the energy maxima for E=
"/#

and M=
"/#

were estimated for
different stages of evolution of the nonlinear wave groups, both recurrent and
breaking. The end result was that the behaviour was consistently represented by taking
c©Eª E c©Mª E 0±75 for both densities. A typical example is shown in figure 10. This is
consistent with the observations of Melville (1983, §5) and the envelope speed of the
wave packet shown in figure 6 of Rapp & Melville (1990). The error incurred
subsequently by taking this value as constant throughout the evolution was not
significant in assessing the maximum value of the dimensionless growth rates. This was
checked by calculating the effect of different c©Eª and c©Mª values on DkE=

"/#
}Dt and

DkM=
"/#

}Dt. The choice of values of 0±6 and 0±9 naturally changes the relative speeds
of the growth rate distributions with respect to the envelope, but this was found to have
negligible impact on the maximum values of these growth rates.

3.2.2. Localization of the rates of change of E=
"/#

and M=
"/#

In figure 3 it was seen that the local behaviour of E=
"/#

and M=
"/#

and their Dk}Dt
derivatives provided a basis for investigating the underlying dynamics and energetics.
However, it is the relative growth rates at the envelope maxima of E=

"/#
and M=

"/#
expressed through the corresponding dimensionless growth rates defined in (2.2) that
should determine the threshold for breaking.

This phase of the investigation led to new insights into the underlying processes
leading to recurrence or breaking. These are visualized through the typical case of
N¯ 5 shown in figure 1 and are described as follows.

(a) Except very close to the onset of breaking (which is described in (c) below), the
envelope maxima of E=

"/#
and M=

"/#
fluctuate significantly on a fast time scale of O(2T ).

This arises from the half-wavelength averaging in combination with the asymmetric
carrier wave form shape due to nonlinearity, and necessitated examining the detailed
behaviour of the modulating wave train with a much higher temporal solution than has
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F 11. (a) The dashed line shows the evolution of the trend of the mean value of E= max

"/#
averaged

over several wave periods for the entire recurrence cycle shown in figure 1. The solid line segments
terminating in n show the extent of the local fluctuations of the envelope maxima of E=

"/#
at several

different times during the entire recurrence cycle shown in figure 1. The indicated times t
"
, t

#
and t

$
occur during the growth, peak and decay phases respectively. (b) The local behaviour at the peak of
the recurrence cycle in t}2π ` (83±8, 85±8) of the envelope maxima of E=

"/#
and M=

"/#
over an expanded

time scale at the peak of the recurrence cycle.

been reported previously. These fluctuations are discussed in greater detail in Appendix
C. Figure 11 illustrates the strength of these fluctuations in the local densities for the
case N¯ 5 shown in figure 1. Figure 11(a) shows the significant level of the local
variation in E=

"/#
at representative times within the growth and recurrence cycle. The

other local mean densities fluctuate similarly, as seen in figure 11(b) which expands the
temporal resolution of their behaviour in the short time interval t}2π ` [83±8, 85±8] at
the peak of the recurrence cycle. These fluctuations also occur in the envelope
maximum of the surface elevation, as discussed below in (b).

(b) For the typical recurrence case of figure 1, figure 12 shows how the relative
dimensionless growth rate distributions β©E or Mª evolve relative to the maxima of
the envelopes of E=

"/#
and M=

"/#
. Due to their propagation speed exceeding the envelope

speeds c©E or Mª, the β©E or Mª fluctuate rapidly at the envelope maxima of E=
"/#

and M=
"/#

.
These growth rates at the en�elope maxima are central to the discussion and are
designated βmax

©E or Mª. Travelling with the envelope speed, it is seen that the βmax
©E or Mª
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F 12. A typical example of the localization of the relative growth rates β of (a) E=
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along the wave envelope, shown as thick lines for the recurrence case of figure 1 at the three times
t}2π¯ 84±5, 84±7 and 84±9. The thin line in each figure is the envelope of the corresponding mean
energy or momentum density. Note how the growth rates change in time from positive through zero
to negative at the envelope maxima.

undergo variations many times the local average value over a time scale of O(2T ). This
is superimposed on a much slower mean growth or decay.

Figure 13 shows this key property of the βmax
©E or Mª at three different times t

"
, t

#
and

t
$
during the recurrence cycle indicated in figure 11(a). From these plots it is seen that

the long-term mean growth rate is positive, nearly zero and negative respectively at
these three times. The fast variation of the growth rate is clearly associated with the
O(2T )-period fluctuations of the maximum of the wave elevation envelope discussed in
(a). Correspondingly, for each of the βmax

©E or Mª there is a maximum growth rate over
a local time interval of O(2T ), designated βlmax

©E or Mª. In this recurrence case, it is seen that
βlmax

©E or Mª attains a maximum of 0±2 for both E=
"/#

and M=
"/#

. This behaviour of βlmax
©E or Mª

contrasts strongly with the case that proceeds to breaking in figure 1, discussed below
in (c).

(c) Once βlmax
©E or Mª reaches the recurrence maximum of 0±2, figure 14 shows how the

growth rate distributions β©E or Mª almost ‘phase-lock’ to the envelope maximum
during the ensuing O(0±5T ) interval just before breaking. As seen in figure 15, this
results in the envelope maxima of E=

"/#
and M=

"/#
now experiencing sustained βmax

©E or Mª

levels of O(0±2) during this time interval. Only minor variations of this behaviour were
found for each of the other breaking onset cases we examined.

Figure 16 shows the entire time evolution for both recurrence and breaking cases of
the respective βlmax

©E or Mª for E=
"/#

and M=
"/#

for the case N¯ 5 corresponding to figure 1.
Also shown is the case of a slightly steeper initial wave group with (ak)

!
¯ 0±12. This

case proceeds to break earlier than for (ak)
!
¯ 0±1125, with a higher maximum growth

rate occurring during the final approach to breaking.

3.2.3. General determination of breaking or recurrence

Overall, we found that the onset of recurrence or breaking was determined by the
behaviour of βlmax

©E or Mª during the evolution of the wave group. Obtaining the behaviour
of the short-term maximum growth rates βlmax

©E or Mª required an extensive searching
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F 13. The local fluctuations of ηmax, the maximum of the surface elevation envelope in relation
to βmax for E=

"/#
and M=

"/#
at three stages t

"
, t

#
and t

$
during the evolution of the recurrence case of

figure 1 and coinciding with the times in figure 1 during which the local mean growth rate is positive,
zero and negative respectively. (a) t

"
}2π ` (69, 71±4), (b) t

#
}2π ` (83±4, 85±6), (c) t

$
}2π ` (99, 101±2).

procedure, and this was carried out for each value of N. A major result arising from
this study is presented in figure 17, which shows how the global maximum growth rate
βgmax

©E or Mª for recurrence varies with the number of waves N in each wave group for each
of the densities E=

"/#
and M=

"/#
. This figure highlights two very remarkable results. Most

significantly, for both E=
"/#

and M=
"/#

, the global maximum value for recurrence
βgmax

©E or Mª is insensiti�e to N, despite the significant variation of the initial mean carrier
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wave slope (ak)
!

seen in figure 2. It also appears to be insensitive to the initial
conditions and to the presence of a uniform vertical shearing current, as discussed
below. Figure 17 also shows that cases of N¯ 5 with a different initial wave group
configuration and when vertical shear was present are seen to conform closely. These
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recurrence against N, the number of waves in one modulation cycle, for (a) E=
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and (b) M=
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, for

Ω¯ 0. These results are for the initial wave spectrum (1.1) and the initial steepness values shown in
figure 2. The case Ω¯ 0 with the initial bi-modal spectrum and Ω¯ 0 described in §3.2.5 is shown
(). Also shown with n is the maximal recurrence case of N¯ 5 and Ω¯ 0±2 documented in
figure 19.

cases are described below in §3.2.5 and §3.2.6. Remarkably, the global maximum
growth rates for recurrence, βgmax

©E or Mª, are practically identical for E=
"/#

and M=
"/#

, despite
the very different nature of the local wave energy and momentum densities. For the
ensemble of cases examined, we found a mean value of 0±195 and 0±196 for βgmax

©E or Mª for
E=

"/#
and M=

"/#
respectively, each with a standard deviation of 0±008. For our present

purposes, it suffices to take βgmax
©E or Mª ¯ 0±2.

3.2.4. The onset of breaking

In every case of breaking onset, we found two concomitant signatures once the
recurrence limit βgmax

©E or Mª ¯ 0±2 was reached. During the ensuing O(0±5T ) interval
immediately prior to overturning, the growth rate at the envelope maximum, βmax

©E or Mª,
for both E=

"/#
and M=

"/#
effectively phase-locks to the envelope (see figure 14), persisting

at a large positive (O(0±2)) level until the exact moment of overturning (figure 15). This
sustained large positive growth rate is the key dynamical factor underlying the onset
of breaking. In strong contrast, for all recurrence cases, just beyond the recurrence
peak, βmax

©E or Mª rapidly became negative for both E=
"/#

and M=
"/#

, as seen in figure 12.

3.2.5. Another class of initial wa�e group structure

In the past, the wave steepness at breaking has been proposed as an indicator of
breaking. It has already been seen in figure 2 that (ak)

breaking
has a considerable range
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of variation with respect to the number of waves in the group for this class of
modulating wave train. Mean steepness values observed for breaking waves in the open
ocean wave appear to be generally lower than these levels (e.g. Holthuijsen & Herbers
1986). This may be due in part to a difference in the method of measuring this quantity in
the field, where it is the post-breaking steepness values that are observed and documen-
ted. This motivated investigating other initial modulating wave group configurations
that might have lower wave steepness values at breaking. We examined a wave group
with an initial bi-modal spectrum of the form η¯ a cos(x)a cos(1±2x®π}18).
For N¯ 5, we found recurrence for an initial steepness (ak)

!
¯ 0±067, while for (ak)

!
¯

0±070, breaking occurred for which (ak)
breaking

was 0±358. This value is very similar
to the comparable N¯ 5 case of a wave group with two small symmetric sidebands.
Despite the similarity in (ak)

breaking
values, the onset of breaking occurred considerably

earlier – at t}2π¯ 40 compared with t}2π¯ 75. More significantly, the resulting
computations of βlmax

©E or Mª revealed that the same threshold values βgmax
©E or Mª were

applicable to this case, as shown in figure 17.

3.2.6. Influence of a uniform surface shear

The results of Teles da Silva & Peregrine (1988) and Millinazzo & Saffman (1990),
amongst others, suggest that a background linear vertical shear current should have a
potentially strong influence on the evolution of the wave train. Depending on the
strength of the shear, we felt that this might be a contributing factor to the low values
of breaking wave steepness observed at sea. This motivated an extension of our study
to examine a case of a surface-layer shear current that was typical of well-developed
open ocean wave conditions for which wind forcing would be of secondary importance.
We note that the actual depth distribution of the surface-layer shear current is a
complex research issue, and the interested reader is referred to the recent paper by
Craig & Banner (1994) for further details. For the present purpose, we asumed a net
surface-layer current of O(0±03U

"!
) decreasing linearly over a depth of one significant

wave height (SWH). Here, U
"!

is the mean wind speed at the reference height of 10 m
above the mean sea level and the SWH is related to the mean energy E of the waves
by SWH¯ 4E "/#. Thus we assumed a shear profile of the form U(y)¯Ωy, with
y¯ 0 corresponding to mean sea level. The shear rate Ω was estimated using the fully
developed Pierson–Moskowitz (1964) wind sea model in which E¯ 1±62¬10−$ g#}
(2π f

PM
)%, where f

PM
¯ 0±13g}U

"!
. For U

"!
C 10 m s−", this yields ΩC 0±12 s−", but to

allow for possible underestimation of the surface shear due to the assumed linear shear
model, we conducted our detailed investigation using a slightly stronger background
shear level of Ω¯ 0±2 s−" to assess the potential influence of surface-layer shear on the
onset of breaking.

After suitable scaling, this background shear was configured within the DP model
and the effect of this surface shear layer was investigated for N¯ 5 and the initial wave
group specified in §1. The surface shear reduced the steepness at breaking from 0±365
for the shear-free case to 0±306. This point has been included in figure 2. Also, the
evolution time to breaking is reduced significantly by the presence of the Ω¯ 0±2 s−"

shear layer. For example, for N¯ 5 and (ak)
!
¯ 0±12, the shear reduces the evolution

time to breaking from t}2π¯ 60±5 to 47. However, despite the very different value of
(ak)

breaking
, the values obtained for βgmax

©E or Mª were identical to those found in the
absence of shear.

Figure 18 illustrates the influence of shear on the evolution in greater detail. Figure
18 compares the evolution of the initial wave group with N¯ 5 and (ak)

!
¯ 0±11 for

Ω¯ 0 (previously shown in figure 16) and Ω¯ 0±2. It is seen that in the absence of
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(a) (b)

t/2ð

ˆâE1/2

lmax

t/2ð

ˆâM1/2

lmax

0.25

0.20

0.15

0.10

0.05

0 20 40 60 80 100 120

0.25

0.20

0.15

0.10

0.05

0 20 40 60 80 100 120

F 18. Typical examples showing the influence of a background shear on the evolution
to breaking of βlmax for (a) E=

"/#
and (b) M=

"/#
. The initial steepness (ak)

!
¯ 0±11, N¯ 5 and the initial

spectrum (1.1) : D shows the evolution to recurrence for zero background shear (Ω¯ 0) and n shows
that Ω¯ 0±2 results in evolution to breaking.
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F 19. As figure 18 but for Ω¯ 0±2 for N¯ 5: D shows the recurrence evolution for initial
steepness (ak)

!
¯ 0±1025 and n shows the evolution to breaking that occurs for initial steepness

(ak)
!
¯ 0±11. Notice the largest value of βlmax for each of E=

"/#
and M=

"/#
for the recurrence case with

Ω¯ 0±2 agrees closely with the critical level βgmax for Ω¯ 0.

shear, recurrence occurs for this initial condition, but when the shear layer is present,
instability to breaking now occurs. We determined the marginal stability case for
Ω¯ 0±2 s−" for N¯ 5 and show the evolution curves for βlmax

©E or Mª for the adjacent recur-
rence and breaking cases in figure 19. It should be noted that the stability boundary for
recurrence now occurs at the lower (ak)

!
level of 0±1025. However, the recurrence

threshold values for βgmax
©E or Mª remain at the shear-free levels. These results have been

superposed in figure 17.

4. Discussion

Our investigation confirms that the onset of breaking is controlled by the nonlinear
behaviour of the wave group and may be determined by the universal threshold
βgmax

©E or Mª proposed here, based on dimensionless growth rates of the local mean energy
or momentum densities. These quantities reflect the very complex convergences and
divergences of the localized fluxes of momentum and energy within the wave group.
Previous efforts to determine the onset of breaking in terms of a local surface variable
have not elucidated the underlying wave group dynamics, particularly the crucial time
when the recurrence threshold is reached. In the course of this study, we also monitored
certain ‘ traditional ’ variables such as the wave slope, vertical acceleration at the crest
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and horizontal fluid velocity at the crest both at the recurrence peak and at breaking.
We did not find universal behaviour in any of these local surface variables, either when
the recurrence threshold was reached or at breaking, as we varied the number of waves
in the group, added a background shear and varied the initial conditions. However, our
study does not exclude the possibility of a uni�ersal threshold based on another local
or a locally averaged surface variable. For the latter, questions arise concerning the
underlying dynamical significance and appropriate group velocity, and this is left to a
future study. In any event, to be relevant to ocean waves, the study should embrace
cases where surface pressure forcing competes with the nonlinear modulation in the
presence of vertical shear. We will report on this extension of the investigation in a
future paper.

In this study, we searched for possible constraints imposed by the periodic
computational domain by examining the case of three wave groups each containing an
integer number (3) of carrier waves. This case did not develop any subharmonic
instability, reproducing precisely the same behaviour as a single group of three waves
with the same initial wave slope specification. As the central wave group was not
constrained by the periodicity requirement and was free to deform through
nonlinearity, we concluded that the periodicity was not imposing any significant
constraints.

The assumption of two-dimensionality is another potential limitation when
attempting to extrapolate the present results to the oceanic context. First, documented
steepness levels of breaking waves at sea appear to be somewhat lower than the
steepness values at breaking determined in our computations (e.g. Holthuijsen &
Herbers 1986), but this may be associated with differences in the method of assessing
(ak)

breaking
. Our calculated (ak)

breaking
values were determined at the time step just

prior to breaking, while the field observations are based on post-breaking
measurements. This difference could be appreciable, depending on the strength of the
breaking event and when the steepness was determined during the breaking cycle. This
might account for the discrepancy between our results for the background shear case
((ak)

breaking
C 0±3) and observed breaker steepness values. Further careful observations

that address this issue and distinguish actual dominant wave breaking from parasitic
breaking of shorter waves at the crests of the dominant waves are necessary to resolve
this aspect. Secondly, according to linear theory, the fastest-growing instabilities of
nonlinear wave groups of moderate initial steepness are oblique rather than in the
direction of propagation of the wave group (see e.g. Yuen & Lake 1982, §VI, E).
Indeed, Melville (1982) observed that for initial wave steepness levels exceeding 0±29,
the dominant instabilities were three-dimensional in character. However, extending the
computational model to explore these very steep initial wave steepness cases to
embrace this aspect is beyond the scope of the present study and left to the future.

5. Conclusions

Determining whether an individual wave will break in an unforced nonlinear
modulating wave group has been investigated in terms of the behaviour of non-
dimensional relative rates of change of the local mean energy and momentum densities,
following their envelopes. The local mean is calculated over one half the local
wavelength. The calculations were based on a periodic fully nonlinear two-dimensional
inviscid free-surface code used in conjunction with an interior irrotational flow code.
Different initial configurations for cases that evolved to breaking revealed a significant
range of local wave steepness at the onset of breaking. Cases were included with a
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superposed linear background shear typical of ocean surface-layer shear levels, as it
was found that the presence of shear significantly reduces the local wave steepness at
breaking. The major conclusions of this study are the following.

(a) The maxima of the envelopes of the local wave momentum and energy density
evolve in a complex fashion, with a fast fluctuation superimposed on a much slower
growth or decay. This fast fluctuation is due to our choice of half-wavelength averaging
over the strongly asymmetric carrier wave profiles that occur due to nonlinearity. At
a critical point in the evolution, either a rapid onset of breaking occurs, or the wave
group undergoes a recurrence to close to its initial configuration.

(b) Our results provide strong evidence for the existence of a uni�ersal threshold
behaviour of the local relative growth rates of the mean momentum and energy
densities that unambiguously differentiates wave groups in which individual steep
waves will proceed to break from those that will subsequently undergo recurrence
without breaking, once the threshold is reached. Recurrence occurs when the relative
growth rates of the mean momentum and energy densities at their envelope maxima
reach the threshold of 0±2 and then begin to decrease immediately. In strong contrast,
breaking occurs when these relative growth rates are sustained at around this threshold
level during the final interval of O(0±5T ) just prior to breaking.

As future research on this topic, it remains to verify these two-dimensional results
observationally and to account for them in a theoretical framework. While it is known
that wave groups of dominant ocean surface waves have intrinsically narrow
directionality, typical reported steepness levels of dominant ocean wave breakers
appear to be lower than those in our two-dimensional calculations. This may be due
to wind influence and}or three-dimensional effects, and it is left to a future study to
investigate whether the calculated breaking thresholds in terms of local mean
momentum or energy growth rates are modified significantly when these additional
factors are involved.

The authors gratefully acknowledge the financial support of the Australian Research
Council for this research project. We also sincerely thank our colleagues Professor
D. H. Peregrine and Dr J. W. Dold for allowing us to use their free surface code, and
Professor J. Fenton and Dr J. Rottman for their helpful technical discussions.

Appendix A. Calculation of interior potential problem

We needed to solve the interior potential problem for a two-dimensional region at
any given time for which the unsteady free surface configuration was computed by the
DP code. Our numerical scheme for this calculation is described below.

A.1. Cauchy’s integral theorem

For the two-dimensional irrotational flow field considered here, a complex potential
w¯φiψ exists with φ and ψ satisfying Laplace’s equation: ~#φ¯ 0 and ~#ψ¯ 0.
The velocity components satisfy the familiar Cauchy–Riemann equations

u¯
¥φ
¥x

¯
¥ψ
¥y

, (A 1)

�¯
¥φ
¥y

¯®
¥ψ
¥x

. (A 2)

When the above relations are satisfied, then the complex function w¯φiψ has a
unique derivative with respect to the complex variable z¯xiy. If w(z) has a
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F 20. Typical example of the conformal mapping z¯ e−iz
"
(x

"
,y

"
). The periodic deep water wave

train with Ω¯ 0, N¯ 5 and L¯ 2π in the z
"
-plane is transformed into the closed contour seen in the

z-plane.

derivative at each point in the domain, w(z) is analytic. If w is analytic within and on
the closed contour C and also if w(z) is known everywhere on the closed contour C,
then w(Z ) can be calculated at any point Z inside C by Cauchy’s integral formula:

w(Z )¯
1

2πi

w(z)

z®Z
dz. (A 3)

Furthermore, equation (A 3) can be written as

w(z)®w(Z )

z®Z
dz¯ 0, (A 4)

where Z is an interior point within C and z is on the contour C. We note that the
integrand in (A 4) is never singular, no matter how closely Z approaches the boundary
contour C.

A.2. A conformal mapping

In order to apply Cauchy’s integral formula, following Fornberg (1980), the infinite
fluid surface Z

"
(x

"
, y

"
) in the physical plane is first transformed into a finite closed

contour Z(x, y) by the conformal mapping:

z(x, y)¯ e−i (#
π/λ) z"(x",y"), (A 5)

where λ is the period of the free surface. In the mapped plane Laplace’s equation is still
satisfied. An example of this conformal mapping is shown in figure 20.

A.3. Numerical scheme

We developed a Fortran code based on a simpler and more accurate method
exploiting periodicity around the contour as introduced by Fenton (1996). In this
approach, a numerical approximation is used to transform the integral equation (A 4)
into an algebraic equation by using the trapezoidal rule as follows:

3
N−"

j=!

w(z
j
)®w(z

k
)

z
j
®z

k

z!
j
¯ 0, (A 6)

where z!
j
¯dz( j)}dj. Here j is a continuous variable that takes on only integer values

after the differentiation, and equation (A 6) then holds for each z
j
with j¯ 0, 1, 2,… ,

N®1, at which w is known on the boundary. Also, z
k

with k¯ 1, 2,… ,M is the set of
M interior points where the flow details are sought.

The geometric coefficient Ω
kj

is introduced here as

Ω
kj

¯
z!
j

z
j
®z

k

. (A 7)
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Then the integral equation (A 6) can be written as

3
N−"

j=!

(w
j
®w

k
)Ω

kj
¯ 0; (A 8)

solving for the w
k

gives

w
k
¯

3
N−"

j=!

w
j
Ω

kj

3
N−"

j=!

Ω
kj

. (A 9)

Clearly, if the value of a complex potential function, say w
j
, is known on the

boundary and the geometric coefficient above has been calculated, the value of the
interior complex potential function w

k
can be estimated for any arbitrary point z

k
.

As discussed in detail by Fenton (1996), the derivative z!
j
¯dz( j)}dj can be

calculated using a Fourier approximation as

z!
j
¯

i2π

N #
3
N−"

n="

z
n
d( j®n), (A 10)

where

d( j®n)¯®i
N

2
(®1) j−n cot(π( j®n)N ) for j1 n, (A 11)

d(0)¯ 0. (A 12)

A.4. Complex �elocity q¯ u®i� and its time deri�ati�e q
t
¯ u

t
®i�

t

Furthermore, as Laplace’s equation is also satisfied for the complex velocity
q¯ u®i� and its time derivative q

t
¯ u

t
®i�

t
:

~#q¯ 0, (A 13)

~#q
t
¯ 0. (A 14)

Therefore, the desired complex velocity and its time derivative for any arbitrary
interior point z

k
can be calculated as

q
k
¯

3
N−"

j=!

q
j
Ω

kj

3
N−"

j=!

Ω
kj

, (A 15)
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. (A 16)

Appendix B. The calculation of the derivatives DkE= }Dt and DkM= }Dt

As described in §2.4, the derivatives of the mean energy and momentum (DkE= }
Dt and DkM= }Dt) were used to calculate the growth rates. The expression for the
derivative Dk}Dt was defined as

Dk}Dt¯ ¥}¥tc©E or Mª ¥}¥x. (B 1)
That is

DkE= }Dt¯ ¥E= }¥tc
E
= ¥E= }¥x, (B 2)

DkM= }Dt¯ ¥M= }¥tc
M

= ¥M= }¥x. (B 3)
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An outline of the calculations involved is given here for the irrotational and linear
shear flow fields investigated in this paper.

B.1. Wa�elength-a�eraged local mean energy and momentum

First, we give the forms of the local energy density e and momentum density m,
assuming a water density ρ¯ 1. For an irrotational fluid, these can be written as

e¯
η

−d

"

#
(u#�#) dy"

#
η#, (B 4)

m¯
η

−d

udy. (B 5)

In the linear shear case, they become

e¯ e
!


Ω#

6
(η$d $), (B 6)

m¯m
!


Ω

2
(η#®d #), (B 7)

where e
!
and m

!
are the corresponding local energy and momentum of the irrotational

flow component, that is

e
!
¯

η

−d

"

#
(u#

!
�#

!
) dy"

#
η#, (B 8)

m
!
¯

η

−d

u
!
dy, (B 9)

and Ω is the magnitude of the constant vorticity of the fluid in the linear shear flow
case, u

!
¯ u®Ωy is the corresponding irrotational horizontal velocity component of

the fluid velocity and �
!
¯ � is the vertical velocity.

Then, the wavelength-averaged local mean energy density (E= ) and momentum
density (M= ) can be obtained by averaging e and m over one wavelength L (or L is
replaced by L}2 for half-wavelength averages). The forms for these local mean
densities are then

E= (x, t)¯L−"

x+L/#

x−L/#

edx«, (B 10)

M= (x, t)¯L−"

x+L/#

x−L/#

mdx«. (B 11)

For the linear shear flow case, these averaged densities may be written as

E= (x, t)¯L−"

x+L/#

x−L/#

e
!
dx«L−"

x+L/#

x−L/#

Ω#

6
(η$d $) dx«, (B 12)

M= (x, t)¯L−"

x+L/#

x−L/#

m
!
dx«L−"

x+L/#

x−L/#

Ω

2
(η#®d #) dx«, (B 13)

or

E= (x, t)¯E=
!
(x, t)L−"

x+L/#

x−L/#

Ω#

6
(η$d $) dx«, (B 14)

M= (x, t)¯M=
!
(x, t)L−"

x+L/#

x−L/#

Ω

2
(η#®d #) dx«, (B 15)



Onset of breaking for modulating surface gra�ity water wa�es 135

where E=
!

and M=
!

are the corresponding wavelength-averaged local mean energy and
momentum of the irrotational part of the fluid.

B.2. Deri�ati�es of E= and M=

In order to calculate the growth rates β
E

and β
M

, the spatial and time derivatives of
E= and M= were required. The spatial derivatives ¥E= }¥x and ¥M= }¥x were calculated by
a simple first-difference method in the spatial domain. Details of the calculation of the
time derivatives ¥E= }¥t and ¥M= }¥t follow.

For an irrotational flow field, the local time derivatives ¥e}¥t and ¥m}¥t are given by

¥e
¥t

¯ η
¥η
¥t


η

−d

u
¥u
¥t

�
¥�
¥t

dy
¥η
¥t

(u#(η)�#(η))

2
, (B 16)

¥m
¥t

¯
η

−d

¥u
¥t

dy
¥η
¥t

u(η), (B 17)

where u(η) and �(η) are the horizontal and vertical velocities on the free surface.
In the linear shear case, the local time derivatives can be written as

¥e
¥t

¯
¥e

!

¥t


Ω#

2
η#

¥η
¥t

, (B 18)

¥m
¥t

¯
¥m

!

¥t
Ωη

¥η
¥t

, (B 19)

where ¥e
!
}¥t and ¥m

!
}¥t are the local time derivatives of the irrotational flow

contributions.
Next we consider the time derivatives of E= and M= . We note here that in order to

avoid calculating E= and M= using a difference method at successive time steps, we used
the following approximate approach:

¥E=
¥t

EL−"

x+L/#

x−L/#

¥e
¥t

dx«, (B 20)

¥M=
¥t

EL−"

x+L/#

x−L/#

¥m
¥t

dx«. (B 21)

The corresponding formulae for the linear shear flow case take the form

¥E=
¥t

EL−"

x+L/#

x−L/#

¥e
!

¥t
dx«

Ω#

2
L−"

x+L/#

x−L/#

η#
¥η
¥t

dx«, (B 22)

¥M=
¥t

EL−"

x+L/#

x−L/#

¥m
!

¥t
dx«ΩL−"

x+L/#

x−L/#

η
¥η
¥t

dx«. (B 23)

The accuracy of the above approximations was examined by comparing results using
these approximations with typical results for local time derivatives calculated by the
finite difference method applied over successive time steps. These tests confirmed that
the worst case error was less than 7%.

Appendix C. Properties of the fast fluctuations of the envelopes

The rapid fluctuations detected in the wave envelope maximum and in the associated
envelope maxima of E=

"/#
and M=

"/#
result from the very asymmetric wave profiles that

occur successively at the peak of the carrier wave envelope during the evolution. The
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F 21. The detailed structure of the surface elevation profile at two critical times during the time
interval t}2π ` (83±8, 85±8) for the recurrence case of (ak)

!
¯ 0±11, N¯ 5, Ω¯ 0 and the initial

spectrum (1.1). These illustrate the strong crest}trough asymmetry due to nonlinearity that is
responsible for the first fluctuations in the maximum of the elevation envelope when (a) the crest is
at the envelope maximum, (b) the trough is at the envelope maximum. Figure 11 documents the
corresponding variability of the local mean energy and momentum densities.

degree of the crest–trough asymmetry depends on the stage of evolution and is due to
the influence of nonlinearity. Figure 21 shows the basis of these fluctuations for the
typical case of N¯ 5, (ak)

!
¯ 0±11 and Ω¯ 0, during the period t}2π ` [83±8, 85±8] at

the peak of the recurrence cycle when the maximum surface elevation contrast occurs.
The maximum value of the envelope elevation is attained when the much sharper and
higher crest occupies the envelope maximum, as seen in figure 21(a). The minimum
value of the envelope maximum is determined by the carrier wave trough elevation,
as seen in figure 21(b). The difference between these two extremes of the maxima of the
elevation envelope over this time interval is seen to be appreciable. This underlies the
fast variations in the local mean energy and momentum densities and their relative
growth rates reported in the text.
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